๐ŸŒ€ Event Loops Demystified: The Secret Behind High-Performance Applications

Ever wondered how a single Redis server can handle thousands of simultaneous connections without breaking a sweat? Or how Node.js can serve millions of requests with just one thread? The magic lies in the event loop – a deceptively simple concept that powers everything from your web browser to Netflix’s streaming infrastructure.

๐ŸŽฏ What is an Event Loop?

An event loop is like a super-efficient restaurant manager who never stops moving:

๐Ÿ‘จโ€๐Ÿ’ผ Event Loop Manager:
"Order ready at table 3!" โ†’ Handle it
"New customer at door!" โ†’ Seat them  
"Payment needed at table 7!" โ†’ Process it
"Kitchen needs supplies!" โ†’ Order them

Traditional approach (blocking):

# One waiter per table (one thread per request)
waiter1.take_order_from_table_1  # Waiter1 waits here...
waiter2.take_order_from_table_2  # Waiter2 waits here...  
waiter3.take_order_from_table_3  # Waiter3 waits here...

Event loop approach (non-blocking):

# One super-waiter handling everything
loop do
  event = get_next_event()
  case event.type
  when :order_ready then serve_food(event.table)
  when :new_customer then seat_customer(event.customer)
  when :payment then process_payment(event.table)
  end
end

๐Ÿ—๏ธ The Anatomy of an Event Loop

๐Ÿ”„ The Core Loop

// Simplified event loop (Node.js style)
while (true) {
  // 1. Check for completed I/O operations
  let events = pollForEvents();

  // 2. Execute callbacks for completed operations
  events.forEach(event => {
    event.callback();
  });

  // 3. Execute any scheduled timers
  runTimers();

  // 4. If no more work, sleep until next event
  if (noMoreWork()) {
    sleep();
  }
}

๐Ÿ“‹ Event Queue System

โ”Œโ”€ Timer Queue โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€ I/O Queue โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€ Check Queue โ”€โ”€โ”
โ”‚ setTimeout()       โ”‚    โ”‚ File operations    โ”‚    โ”‚ setImmediate() โ”‚
โ”‚ setInterval()      โ”‚    โ”‚ Network requests   โ”‚    โ”‚ process.tick() โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ”‚ Database queries   โ”‚    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                     โ†“
                          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                          โ”‚   Event Loop Core   โ”‚
                          โ”‚  "What's next?"     โ”‚
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โšก Why Event Loops Are Lightning Fast

๐Ÿšซ No Thread Context Switching

# Traditional multi-threading overhead
Thread 1: [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] Context Switch [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] Context Switch
Thread 2:           [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] Context Switch [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ]
Thread 3:                     [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ] Context Switch [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ]
# CPU wastes time switching between threads!

# Event loop efficiency  
Single Thread: [โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ]
# No context switching = pure work!

๐ŸŽฏ Perfect for I/O-Heavy Applications

# What most web applications do:
def handle_request
  user = database.find_user(id)     # Wait 10ms
  posts = api.fetch_posts(user)     # Wait 50ms  
  cache.store(posts)                # Wait 5ms
  render_response(posts)            # Work 1ms
end
# Total: 66ms (65ms waiting, 1ms working!)

Event loop transforms this:

# Non-blocking version
def handle_request
  database.find_user(id) do |user|           # Queue callback
    api.fetch_posts(user) do |posts|         # Queue callback  
      cache.store(posts) do                  # Queue callback
        render_response(posts)               # Finally execute
      end
    end
  end
  # Returns immediately! Event loop handles the rest
end

โ˜๏ธ Nextflix: Cloud Architecture

NextFlix Cloud Architecture

ย High-Level Design of Netflix System Design:

Microservices Architectureย of Netflix:

Netflix Billing Migration To Aws

Application-data-caching-using-ssds

Read System Design Netflix | A Complete Architecture: System-design-netflix-a-complete-Architecture

Reference: NetFlix Blog, GeeksForGeeks Blog

๐Ÿ”ง Event Loop in Action: Redis Case Study

๐Ÿ“ก How Redis Handles 10,000 Connections

// Simplified Redis event loop (C code)
void aeMain(aeEventLoop *eventLoop) {
    while (!eventLoop->stop) {
        // 1. Wait for file descriptor events (epoll/kqueue)
        int numEvents = aeApiPoll(eventLoop, tvp);

        // 2. Process each ready event
        for (int i = 0; i < numEvents; i++) {
            aeFileEvent *fe = &eventLoop->events[fired[i].fd];

            if (fired[i].mask & AE_READABLE) {
                fe->rfileProc(eventLoop, fired[i].fd, fe->clientData, fired[i].mask);
            }
            if (fired[i].mask & AE_WRITABLE) {
                fe->wfileProc(eventLoop, fired[i].fd, fe->clientData, fired[i].mask);
            }
        }
    }
}

๐ŸŽญ The BRPOP Magic Revealed

# When you call redis.brpop()
redis.brpop("queue:default", timeout: 30)

# Redis internally does:
# 1. Check if list has items โ†’ Return immediately if yes
# 2. If empty โ†’ Register client as "blocked"  
# 3. Event loop continues serving other clients
# 4. When item added โ†’ Wake up blocked client
# 5. Return the item

# Your Ruby thread blocks, but Redis keeps serving others!

๐ŸŒ Event Loops in the Wild

๐ŸŸข Node.js: JavaScript Everywhere

// Single thread handling thousands of requests
const server = http.createServer((req, res) => {
  // This doesn't block other requests!
  database.query('SELECT * FROM users', (err, result) => {
    res.json(result);
  });
});

๐Ÿ Python: AsyncIO

import asyncio

async def handle_request():
    # Non-blocking database call
    user = await database.fetch_user(user_id)
    # Event loop serves other requests while waiting
    posts = await api.fetch_posts(user.id)  
    return render_template('profile.html', user=user, posts=posts)

# Run multiple requests concurrently
asyncio.run(handle_many_requests())

๐Ÿ’Ž Ruby: EventMachine & Async

# EventMachine (older)
EventMachine.run do
  EventMachine::HttpRequest.new('http://api.example.com').get.callback do |response|
    puts "Got response: #{response.response}"
  end
end

# Modern Ruby (Async gem)
require 'async'

Async do |task|
  response = task.async { Net::HTTP.get('example.com', '/api/data') }
  puts response.wait
end

Read More (Premium content): RailsDrop: Rubys-async-revolution

Message from the post: “๐Ÿ’ช Ruby is not holding back with the JS spread of the WORLD! ๐Ÿ’ช Rails isย NOT DYING in 2025!! ITS EVOLVING!! ๐Ÿ’ช We Ruby/Rails Community Fire with BIG in Future! ๐Ÿ•บ”


โš™๏ธ The Dark Side: Event Loop Limitations

๐ŸŒ CPU-Intensive Tasks Kill Performance

// This blocks EVERYTHING!
function badCpuTask() {
  let result = 0;
  for (let i = 0; i < 10000000000; i++) {  // 10 billion iterations
    result += i;
  }
  return result;
}

// While this runs, NO other requests get served!

๐Ÿฉน The Solution: Worker Threads

// Offload heavy work to separate thread
const { Worker } = require('worker_threads');

function goodCpuTask() {
  return new Promise((resolve) => {
    const worker = new Worker('./cpu-intensive-task.js');
    worker.postMessage({ data: 'process this' });
    worker.on('message', resolve);
  });
}

๐ŸŽฏ When to Use Event Loops

โœ… Perfect For:

  • Web servers (lots of I/O, little CPU)
  • API gateways (routing requests)
  • Real-time applications (chat, games)
  • Database proxies (Redis, MongoDB)
  • File processing (reading/writing files)

โŒ Avoid For:

  • Heavy calculations (image processing)
  • Machine learning (training models)
  • Cryptographic operations (Bitcoin mining)
  • Scientific computing (physics simulations)

๐Ÿš€ Performance Comparison

Handling 10,000 Concurrent Connections:

Traditional Threading:
โ”œโ”€โ”€ Memory: ~2GB (200KB per thread)
โ”œโ”€โ”€ Context switches: ~100,000/second  
โ”œโ”€โ”€ CPU overhead: ~30%
โ””โ”€โ”€ Max connections: ~5,000

Event Loop:
โ”œโ”€โ”€ Memory: ~50MB (single thread + buffers)
โ”œโ”€โ”€ Context switches: 0
โ”œโ”€โ”€ CPU overhead: ~5%  
โ””โ”€โ”€ Max connections: ~100,000+

๐Ÿ”ฎ The Future: Event Loops Everywhere

Modern frameworks are embracing event-driven architecture:

  • Rails 7+: Hotwire + ActionCable
  • Django: ASGI + async views
  • Go: Goroutines (event-loop-like)
  • Rust: Tokio async runtime
  • Java: Project Loom virtual threads

๐Ÿ’ก Key Takeaways

  1. Event loops excel at I/O-heavy workloads – perfect for web applications
  2. They use a single thread – no context switching overhead
  3. Non-blocking operations – one slow request doesn’t block others
  4. CPU-intensive tasks are kryptonite – offload to worker threads
  5. Modern web development is moving toward async patterns – learn them now!

The next time you see redis.brpop() blocking your Ruby thread while Redis happily serves thousands of other clients, you’ll know exactly what’s happening under the hood! ๐ŸŽ‰